Genetic architecture of skeletal convergence and sex determination in ninespine sticklebacks

Update Item Information
Publication Type Manuscript
School or College College of Science
Department Biology
Creator Shapiro, Michael D.
Other Author Summers, Brian R.; Balabhadra, Sarita; Aldenhoven, Jaclyn T.; Miller, Ashley L.; Cunningham, Christopher B.; Bell, Michael A.; Kingsley, David M.
Title Genetic architecture of skeletal convergence and sex determination in ninespine sticklebacks
Date 2009-07
Description The history of life offers plentiful examples of convergent evolution, the independent derivation of similar phenotypes in distinct lineages [1]. Convergent phenotypes among closely related lineages (frequently termed "parallel" evolution) are often assumed to result from changes in similar genes or developmental pathways [2], but the genetic origins of convergence remains poorly understood. Ninespine (Pungitius pungitius) and threespine (Gasterosteus aculeatus) stickleback fish provide many examples of convergent evolution of adaptive phenotypes, both within and between genera. The genetic architecture of several important traits is now known for threespine sticklebacks [3-10]; thus, ninespine sticklebacks thus provide a unique opportunity to critically test whether similar or different chromosome regions control similar phenotypes in these lineages. We have generated the first genome-wide linkage map for the ninespine stickleback and used quantitative trait locus (QTL) mapping to identify chromosome regions controlling several skeletal traits and sex determination. In ninespine sticklebacks, these traits mapped to chromosome regions not previously known to control the corresponding traits in threespine sticklebacks. Therefore, convergent morphological evolution in these related, but independent, vertebrate lineages may have different genetic origins. Comparative genetics in sticklebacks provides an exciting opportunity to study the mechanisms controlling similar phenotypic changes in different groups of animals.
Type Text
Publisher Elsevier
Journal Title Current Biology
Volume 19
Issue 13
First Page 1140
Last Page 1145
DOI 10.1016/j.cub.2009.05.029
citatation_issn 9609822
Subject Convergent evolution; Skeletal convergence; Pungitius pungitius; Gasterosteus aculeatus; Comparative genetics
Subject LCSH Convergence (Biology); Sex determination, Genetic; Sticklebacks -- Evolution; Sticklebacks -- Genetics; Ninespine stickleback; Threespine stickleback
Language eng
Bibliographic Citation Shapiro, M. D., Summers, B. R., Balabhadra, S., Aldenhoven, J. T., Miller, A. L., Cunningham, C. B., Bell, M. A., & Kingsley, D. M. (2009). Genetic architecture of skeletal convergence and sex determination in ninespine sticklebacks. Current Biology, 19(13), 1-22.
Rights Management (c) Elsevier http://dx.doi.org/10.1016/j.cub.2009.05.029
Format Medium application/pdf
Format Extent 844,813 bytes
Identifier ir-main,10579
ARK ark:/87278/s6b85shh
Setname ir_uspace
ID 704936
Reference URL https://collections.lib.utah.edu/ark:/87278/s6b85shh